Department of  Neurosurgery
Menu  -
Call Us: (314) 362-3636

Current Research — Leuthardt Lab

Brain Computer Interfaces (BCIs) for Stroke

As stroke-BCI rehabilitation is growing in its potential as a therapeutic tool, there have been numerous methodological approaches employed. Various signal substrates and effectors have been used to maximize the patient’s plasticity and functional recovery. A deliberate and mechanism-driven approach to the development of these types of technologies for a given stroke-type is sorely needed. This heterogeneity in approach is in large part due to current limitations in existing animal models and limitations in mechanistic imaging studies in humans. The Leuthardt Lab (in conjunction with the Moran, Corbetta and Carter labs) is working towards several efforts that will more comprehensively define the impact of stroke on the brain and mechanistically defined approaches for neural interfaces that can induce a functional recovery. This includes developing a primate model for stroke rehabilitation that will integrate MRI-invisible BCI implants, advanced MR imaging, and state-of-the-art neuroprosthetic techniques. We are also studying human stroke survivors. Studies include both the use of a noninvasive BCI that engages the uninjured side of the brain to control the stroke-affected hand and advanced functional imaging to evaluate the impact on neural circuitry. Cumulatively, both the science and technology created by this project will provide critical insights and new research capabilities that will enhance neuroprosthetic treatment strategies for deep white matter stroke and ultimately reduce the individual suffering and collective burden of this disease.

Advanced Brain Mapping for Neurosurgery

Stereotactic neuronavigation currently is routinely utilized during the resection of brain tumors. This technology has been shown to improve the extent of tumor resection and, as a result, improve survival statistics. That said, it is not routine during resections to make use of similar neuronavigation displays that reflect the functional organization of the brain. Hence, the neurosurgeon often has very little insight into what cognitive functions may be compromised by the operative procedure. Task-based fMRI has been employed as a means of preoperatively localizing function. However, task-based fMRI critically depends on the patient’s ability to comply with the task paradigm, which frequently is lacking; consequently, this procedure often does not provide useful information. Moreover, task-based fMRI conventionally is restricted to mapping the representation of motor and speech function, which omits other important functions, e.g., executive function. During the past several years, it has been shown that the representation of multiple motor, sensory, and cognitive functions can be mapped by analysis of intrinsic brain activity, acquisition of which requires only that the patient hold still during fMRI. Even the waking state during fMRI is not required as essentially the same functional maps are obtained even if the patient is asleep or sedated. Thus, “resting state” fMRI (rsfMRI) provides a much more complete functional map of the brain than does task-based fMRI; moreover, rsfMRI is more reliable and much more time-efficient. In the Leuthardt lab, we are using advanced analytic techniques to create  software packages that seamlessly and automatically analyze resting state fMRI data and generate maps of multiple canonical brain networks (i.e., somatomotor, language, ventral attention, dorsal attention, default mode, visual, and frontoparietal control). These maps then can be easily viewed together with anatomical information as the surgeon plans the operative approach prior to surgery and makes ongoing surgical decisions during the resection. Further, these maps can be used to guide numerous types of therapeutic interventions in the future. We anticipate that this technology will lead to improved cognitive status outcomes and decreased morbidity after neurosurgical resections of malignant brain tumors.

Minimally Invasive Laser-Based Surgery

We use an FDA-approved procedure known as MRI-guided laser interstitial therapy. This technique uses imaging and a laser to target specific damaged regions of the brain. Using magnetic resonance imaging (MRI) in the operating room to visualize the brain, neurosurgeons drill a hole the width of a pencil through the patient’s skull until they reach the site of the diseased tissue (e.g., a brain tumor). Using a special laser probe guided through this hole, they direct the laser to “cook” the cancer or other diseased cells that lie deep within the brain and can’t be accessed by regular surgical techniques. This highly targeted therapy leaves the healthy surrounding brain tissue undamaged, which allows the patient to recover in a much shorter time than traditional brain surgery. The whole procedure generally requires only a one- to two-day hospital stay with minimal pain and scarring.  

We are studying the manner in which this technique can be optimized and the impact it has on the brain for other therapies, specifically the way that laser therapy can improve chemo- and immunotherapy.  We have several clinical trials examining the manner in which laser therapy optimized clinical outcomes of patients with malignant brain tumors receiving either chemotherapy or immunotherapy.

See Brain Laser Center: